Sunday, July 26, 2009

SERVO MECHANISM AND ITS APPLICATION



Servomechanism is an automatic device for the control of a large power output by means of a small power input or for maintaining correct operating conditions in a mechanism. It is a type of feedback control system. The constant speed control system of a DC motor is a servomechanism that monitors any variations in the motor's speed so that it can quickly and automatically return the speed to its correct value. Servomechanisms are also used for the control systems of guided missiles, aircraft, and manufacturing machinery


A servomechanism is unique from other control systems because it controls a parameter by commanding the time-based derivative of that parameter. For example a servomechanism controlling position must be capable of changing the velocity of the system because the time-based derivative (rate change) of position is velocity. A hydraulic actuator controlled by a spool valve and a position sensor is a good example because the velocity of the actuator is proportional to the error signal of the position sensor.

Servomechanism may or may not use a servomotor.

The common type of servo provides position control. Servos are commonly electrical or partially electronic in nature, using an electric motor as the primary means of creating mechanical force. Other types of servos use hydraulics, pneumatics, or magnetic principles. Usually, servos operate on the principle of negative feedback, where the control input is compared to the actual position of the mechanical system as measured by some sort of transducer at the output. Any difference between the actual and wanted values (an "error signal") is amplified and used to drive the system in the direction necessary to reduce or eliminate the error. An entire science known as control theory has been developed on this type of system.

No comments:

Post a Comment